Synthesis and Crystal Structure of the New High-Pressure Phase CdB₂O₄

Johanna S. Knyrim,^[a] Holger Emme,^[a] Markus Döblinger,^[a] Oliver Oeckler,^[a] Matthias Weil,^[b] and Hubert Huppertz^{*[c]}

Abstract: The use of high-pressure/ high-temperature conditions (7.5 GPa and 1100 °C; Walker-type multianvil apparatus) led to the synthesis of a new cadmium borate CdB_2O_4 , starting from stoichiometric mixtures of the oxides. The crystal structure was determined on the basis of single crystal Xray diffraction data, to reveal the hexagonal space group $P6_3$ with a = 885.2(2), c=716.72(8) pm, Z=8, $R_1=0.0178$, and $wR_2=0.0388$ (all data). CdB₂O₄ is built up from interconnected layers of BO₄-tetrahedra and exhibits for the first time the basic structure of

Keywords: borates • structure elucidation • electron diffraction • highpressure chemistry • multianvil a family of compounds, represented by $BaGa_2O_4$, $KAlSiO_4$, $KGeAlO_4$, $KCoPO_4$, CaP_2N_4 and the recently discovered SrP_2N_4 . The lack of superstructure ordering in CdB_2O_4 was confirmed by electron diffraction. Additionally, a B–O–B angle of 180° was found in this borate for the first time.

Introduction

In the last few years, detailed investigations into the highpressure chemistry of oxoborates has led to a large diversity of new polymorphs and compositions. In the field of rareearth oxoborates, we synthesised new high-pressure polymorphs like χ -*REBO*₃ (*RE*=Dy, Er^[1]), γ -*REBO*₃ (*RE*=La-Nd^[2,3]) and δ -*REBO*₃ (*RE*=La, Ce^[4,5]). With 3*d*-transition metals and main group metals, polymorphs like β -*MB*₄O₇ (*M*=Mn,^[6] Ni ,^[6] Cu,^[6] Zn ,^[7] Ca,^[8] Hg^[9]) and the new noncentrosymmetric δ -BiB₃O₆^[10] could be prepared. The compounds β -SnB₄O₇^[11] and β -*MB*₂O₅ (*M*=Hf,^[12] Zr^[13]) are the first representatives of ternary phases in the according borate systems.

Under high-pressure/high-temperature conditions, also new structural features are observed. $RE_4B_6O_{15}$ (RE=Dy, Ho),^[14–16] α -*RE*₂B₄O₉ (*RE*=Sm-Ho),^[17–19] and the recently found HP-NiB₂O₄^[20] show, besides new compositions, the new strucural motif of edge-sharing BO₄-tetrahedra. HP-NiB₂O₄ is the first borate, in which every BO₄-group shares one common edge with an adjacent BO₄-tetrahedron.

In connection with recent high-pressure studies on phase formation and crystal chemistry of the group IIb tetraborates β -ZnB₄O₇ (orthorhombic, *Cmcm*)^[7] and β -HgB₄O₇ (orthorhombic, *Pmn2*₁),^[9] we have turned our attention to the high-pressure and high-temperature synthesis of phases in the system CdO–B₂O₃. Until now only three cadmium borates have been structurally characterised at ambient pressure; the tetraborate CdB₄O₇,^[21] a member of the isotypic *M*B₄O₇ family (orthorhombic, *Pbca*) with *M*=Mg,^[22] Mn,^[23] Co,^[24] Zn,^[25] and Hg,^[26] the orthoborate Cd₃-(BO₃)₂,^[27,28] which adopts the kotoite (Mg₃(BO₃)₂)^[29] structure type (orthorhombic, *Pnnm*) and the diborate CdB₂O₅,^[30] which is isotypic with its Mg^[31] and Co^[24] analogues (triclinic, *P*I).

Under high-pressure and high-temperature conditions, we have now obtained a new cadmium borate with the formula CdB_2O_4 . We report the synthesis and the crystal structure of this compound, including a comparative discussion concerning the related structures of $BaGa_2O_4$,^[32] KAlSiO₄,^[33] KGeAlO₄,^[34,35] KCoPO₄,^[36] CaP₂N₄^[37] and SrP₂N₄.^[38] In contrast to CdB_2O_4 , all these phases form a superstructure, whereas CdB_2O_4 exhibits the basic structure of this family for the first time.

[[]a] J. S. Knyrim, Dr. H. Emme, Dr. M. Döblinger, Dr. O. Oeckler Department Chemie und Biochemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13 (Haus D), 81377 München (Germany)
[b] Prof. Dr. M. Weil Institut für Chemische Technologien und Analytik Technische Universität Wien Getreidemarkt 9/164-SC, 1060 Wien (Austria)

[[]c] Prof. Dr. H. Huppertz
Institut für Allgemeine, Anorganische und Theoretische Chemie Leopold-Franzens-Universität Innsbruck
Innrain 52a, 6020 Innsbruck (Austria)
Fax: (+43)512-507-2934
E-mail: hubert.huppertz@uibk.ac.at

Results and Discussion

Crystal structure: CdB_2O_4 is built up exclusively from corner-sharing BO_4 -tetrahedra, forming layers, which are interconnected to a three-dimensional network. The layers spread out perpendicularly to [001] and consist of "sechser" rings (a ring with six tetrahedral centers)^[39,40] (Figure 1).

Figure 1. Crystal structure of CdB_2O_4 with a view along $[00\bar{1}]$. Grey spheres represent Cd-atoms, white spheres O-atoms; light-shaded polyhedra show BO₄-groups.

These rings show two types of topologies with respect to the orientation of the containing tetrahedra (U=up, D=down): one fourth of the rings reveals an UDUDUD topology, and the remaining rings adopt an UUUDDD topology. Figure 2 gives a view of the two arrangements inside of a layer.

Figure 3. Crystal structure of CdB_2O_4 with a view along [100]. Adjacent layers are shown in different colours. Grey spheres represent Cd-atoms and the white spheres O-atoms.

Figure 4 displays the coordination sphere of the Cd²⁺ions. Cd1 is surrounded by six oxygen atoms in the range of 218–277 pm with an average value of 223.4 pm. This value is smaller than the average Cd–O distance of 231.9 pm in Cd₂B₂O₅^[30] or 232.9 pm in Cd₃(BO₃)₂,^[27] which both exhibit cadmium in a six-fold coordination as well. However, Cd2 possesses 12 (9+3) next-near neighbours with Cd–O distances from 234.1(2) to 285.0(2) pm with a mean distance of 257.4 pm. As far as we know, no cadmium borate with a comparably high coordination-sphere at a Cd²⁺-ion has been described up to now.

Figure 2. One layer of CdB_2O_4 consists of two different types of "sechser" rings^[39,40] (topology: UUUDDD, UDUDD). White spheres represent O-atoms. Light-shaded BO₄-polyhedra face downwards (D), dark-shaded polyhedra face upwards (U) (view along [001]).

The layers are interconnected through the atoms O1 and O2, building further B_6O_6 -"sechser", as well as B_4O_4 -"vierer"-rings. Figure 3 shows the connection of the layers, whereas adjacent layers are marked in white and grey for better demonstration. The layers are equivalent and can be transformed into one another by a rotation of 60° along [001] and a translation of $[00^{1}/_{2}]$.

Figure 4. Coordination spheres of Cd1 and Cd2. Distances are given in pm.

Within the BO₄-network, the B–O bond-lengths reach from 139 to 150 pm with a mean value of 147.3 pm, which corresponds to the known average value of 147.6 pm for B–O distances in BO₄ tetrahedra.^[41,42] The O–B–O bond angles range from 107.4(2) to 112.8(2)° with a mean value of 109.5°. Additionally, we calculated bond-valence sums for CdB_2O_4 with the bond-length/bond-strength and CHARDI concepts^[43-45] (Table 1). The formal ionic charges of the atoms, as calculated from the results of the X-ray structure analysis, were in agreement within the limits of both concepts.

Table 1. Charge distribution in CdB_2O_4 calculated with the bond-length/ bond-strength concept (ΣV) and the CHARDI concept (ΣQ).

	U	1 ()	1 1 1			
	Cd1	Cd2	B1	B2	B3	B4
ΣV	1.94	2.21	3.16	3.06	3.00	2.96
ΣQ	2.00	1.96	3.04	3.15	2.95	2.99
	O1	O2	O3	O4	O5	O6
ΣV	-1.87	-2.07	-2.03	-2.06	-2.00	-1.93
ΣQ	-1.96	-2.10	-2.02	-1.98	-2.04	-1.88

Related compounds: The structure of CdB_2O_4 is closely related to the structure-type of the compounds $BaGa_2O_4$,^[32] KAISiO₄,^[33] KGeAIO₄,^[34,35] KCoPO₄,^[36] CaP₂N₄,^[37] and SrP₂N₄,^[38] Both structure types consist of layers of tetrahedra, forming "sechser" rings^[39,40] with an identical orientation of the tetrahedra. Excepting CdB₂O₄, all other compounds form a superstructure, which means that CdB₂O₄ is the first representative, showing a threefold smaller basic cell. Table 2 lists the lattice parameters of CdB₂O₄ in com-

Table 2. Lattice parameters of CdB_2O_4 and related structures, all in space group $P6_3$.

	Ref.	<i>a</i> [pm]	<i>c</i> [pm]	<i>V</i> [nm ⁻³]
CdB ₂ O ₄		885.2(2)	716.72(8)	0.486(1)
$BaGa_2O_4$	[32]	1864.03(7)	868.01(2)	2.6119(2)
KAlSiO ₄	[33]	1811.11(8)	846.19(4)	2.4037(2)
KGeAlO ₄	[34,35]	1841.3(1)	859.0(1)	2.5222(2)
KCoPO ₄	[36]	1820.6(1)	851.35(8)	2.4438(2)
CaP_2N_4	[37]	1684.66(4)	785.5(2)	1.9307(1)
SrP ₂ N ₄	[38]	1710.29(8)	810.318(5)	2.05270(2)

parison to related compounds. The superstructure can be obtained from the basic structure by the following lattice transformation: $a_{\text{super}} = 2a_{\text{basic}} + b_{\text{basic}}$; $b_{\text{super}} = -a_{\text{basic}} + b_{\text{basic}}$; $c_{\text{super}} = c_{\text{basic}}$. This corresponds to an isomorphic transition of index 3. Figure 5 shows the crystal structure of SrP_2N_4 (*P*6₃) with the position of the according subcell of CdB₂O₄.

In SrP₂N₄, this superstructure is caused by avoiding one P–N–P angle of 180° at nitrogen N15. The isotypic compounds $BaGa_2O_4$,^[32] KAlSiO₄,^[33] KGeAlO₄,^[34,35] KCoPO₄,^[36] and $CaP_2N_4^{[37]}$ do not show the linear arrangement at the corresponding position. By contrast, the associated B–O–B angle in CdB₂O₄ adopts a value of 180° at oxygen O1 on thermal average (Figure 6). From our knowledge, this is the first example of a linear B–O–B arrangement in the structural chemistry of borates. There exists a molecular compound divinylborinic anhydride [(CH₂=CH)₂B]₂O, in which the vibrational data indicate that the molecule possesses C_1

FULL PAPER

Figure 5. Structure of $SrP_2N_4^{[38]}$ with a view along [001]. Polyhedra represent PN_4 tetrahedra, white spheres show Sr^{2+} -ions. The according basic unit cell of CdB_2O_4 is drawn in thick black lines.

Figure 6. Linear environment of O1 in CdB_2O_4 drawn with 90% thermal probability ellipsoids.

symmetry and a linear B-O-B angle.^[46] In a theoretical work, Geisinger et al. investigated the potential energy curves for molecules, containing a B-O-B group.^[47] These results showed that a linear arrangement is energetically unfavourable. In other solids, comparable linear arrangements with different atoms could be found in silicates as zunyite $Al_{13}Si_5O_{16}(OH,F)_{15}O_4Cl$,^[48] thortveitite $Sc_2Si_2O_7^{[49]}$ or (Ag- SiO_4)·Ag₁₀Si₄O₁₃^[50] and in the nitridosilicate Ba2Nd7Si11N23.[21] Liebau examined the influence of thermal vibrations on the Si-O-Si bond-angles^[39] with the following observation: the stronger the displacement at the bridging atom, the smaller the deviation from linearity.^[39,52] Further analysis of the thermal displacement parameters at the bridging atom showed that the oscillation amplitude, perpendicular to the T-T-vector (T=tetrahedral centre), is considerably larger. Figure 6 gives a view of the linear B-O-B arrangement in CdB₂O₄ drawn with 90% thermal probability ellipsoids. It also shows that the thermal displacement parameter at oxygen O1 has the largest value perpendicular to the B-B-vector, which corresponds to Liebau's observations.

The existence of the basic cell in CdB_2O_4 is confirmed by electron diffraction. The electron diffraction pattern (along zone axis [001]) of CdB_2O_4 (left) in comparison to that of SrP_2N_4 (right) can be seen in Figure 7. The reciprocal unit cells of both phases are shown in solid lines. The dashed line in the right pattern (SrP_2N_4) designates the basic cell. In contrast to the pattern of CdB_2O_4 , where no additional reflections can be found, the pattern of SrP_2N_4 clearly exhibits the supercell reflections.

www.chemeurj.org

Figure 7. Electron diffraction patterns (zone axis [001]) of CdB₂O₄ (left) and SrP₂N₄ (right).^[38] The reciprocal unit cells are drawn in black solid lines. In dashed lines (right picture) the basic unit cell is drawn.

Thermal behaviour: Temperature-programmed X-ray powder diffraction investigations were performed to study the thermal stability and the metastable character of CdB₂O₄. Evidence to show that the compound remains stable up to a temperature of 600°C can bee seen in Figure 8. Between T = 600 and $650 \,^{\circ}$ C, decomposition occurs into the normal-pressure borates Cd₂B₂O₅ and CdB₄O₇, and above 850 °C only an amorphous phase can be detected, which remains during and after cooling to room-temperature.

Structure analysis: First, the structure refinement of CdB₂O₄ converged with residuals of R1 = 6.9%, wR2 = 19%. Additionally, a high electron density close to one oxygen atom remained. The consideration of twinning by merohedry and the introduction of a twofold rotation axis according to the twin matrix (010 100 $00\overline{1}$) led to a twin ratio of 0.55:0.45 with satisfactory residuals (R1 = 1.8%, wR2 = 3.9%) without any significant electron density. The checking of a possible higher symmetry, by using the program PLATON,^[53] did not reveal an additional symmetry. Further details of the data collection and refinement are summarised in Table 3, atomic parameters are given in Table 4.

The powder diffraction pattern of CdB₂O₄ was obtained in transmission geometry from a flat sample, using a STOE

hexagonal

CdB₂O₄

Cd₂B₂O₅

CdB407

CdB₄O₇

amorphous

phase(es)

structure refinement (Table 4). The lattice parameters, determined from the powder and the single crystal data agree well.

Conclusion

The high-pressure synthesis of the cadmium borate CdB₂O₄ is an illustrating example for the introduction of new synthetic possibilities in long known borate systems by applying extreme synthetic conditions. Investigations into the physical properties of CdB₂O₄, based on

12.0

 $2\theta / \circ (\lambda = 71.073 \text{pm})$

13.0

Table 3. Crystal data and structural refinement for CdB₂O₄ (standard deviations in parantheses).

empirical formula	CdB ₂ O ₄
molar mass [gmol ⁻¹]	198.02
crystal system	hexagonal
space group	P63
formula units per cell	8
single crystal diffractometer	CAD4 (Nonius)
radiation	MoK_{α}
crystal size [mm ³]	$0.23 \times 0.18 \times 0.14$
T [K]	293
Single crystal data	
<i>a</i> [pm]	885.2(2)
<i>c</i> [pm]	716.72(8)
$V [nm^3]$	0.486(1)
Powder data	
<i>a</i> [pm]	886.64(3)
<i>c</i> [pm]	717.38(3)
<i>V</i> [nm ³]	0.488(1)
F (000)	720
absorption coefficient [mm ⁻¹]	8.756
θ range [°]	$2.66 \le \theta \le 44.88$
range in hkl	$\pm 17, \pm 17, \pm 14$
scan type	$\omega/2\theta$
total no. reflections	16090
independent reflections	2691 $(R_{int} = 0.0365)$
reflections with $I > 2\sigma(I)$	2598 ($R_{\sigma} = 0.0167$)
absorption correction	numerical
transm. ratio (max./min.)	0.4572/0.2449
extinction coefficient χ	0.0600(9)
data/parameters	2691/87
largest difference peak/deepest hole $[e \text{ Å}^{-3}]$	0.985/-2.349
goodness-of-fit (F^2)	1.154
final R indices $(I > 2\sigma(I))$	R1 = 0.0163
	wR2 = 0.0383
R indices (all data)	R1 = 0.0178
	wR2 = 0.0388

www.chemeurj.org

9.0

10.0

11.0

20

200

400

600

800

1100

800

600

400

200

20

J./1

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

15.0

14.0

Chem. Eur. J. 2008, 14, 6149-6154

6152

Table 4. Atomic coordinates and equivalent isotropic displacement parameters $U_{eq}/Å^2$ for CdB₂O₄ (space group P6₃). U_{eq} is defined as one third of the trace of the orthogonalised U_{ij} tensor (standard deviations in parentheses).

Atom	Wyckoff position	x	у	Z,	U_{eq}
Cd1	6 <i>c</i>	0.48061(3)	0.95729(2)	0.54204(2)	0.00703(2)
Cd2	2a	0	0	0.56427(2)	0.00740(3)
B1	2b	2/3	1/3	0.7548(5)	0.0047(4)
B2	2b	2/3	1/3	0.3653(4)	0.0042(4)
B3	6 <i>c</i>	0.3273(2)	0.1522(4)	0.7318(3)	0.0045(4)
B4	6 <i>c</i>	0.1514(4)	0.8227(4)	0.8454(3)	0.0042(4)
O1	2b	2/3	1/3	0.5612(3)	0.0098(3)
O2	6 <i>c</i>	0.3289(2)	0.0899(2)	0.5378(2)	0.0053(2)
O3	6 <i>c</i>	0.18459(18)	0.0034(2)	0.8284(2)	0.0056(2)
O4	6 <i>c</i>	0.4927(2)	0.2048(2)	0.8307(2)	0.0051(2)
O5	6 <i>c</i>	0.2934(2)	0.2986(2)	0.7198(2)	0.0055(2)
O6	6 <i>c</i>	0.3069(2)	0.8106(2)	0.7942(2)	0.0041(2)

the non-centrosymmetric structure, are planned for the future. Especially the increase of the coordination number of boron from three to four in high-pressure borates allows the synthesis of denser borates with structural analogies to for example, aluminates, gallates, silicates and nitridophosphates. In this context, several new borates can be expected for the future.

Experimental Section

Synthesis of CdB₂O₄: The compound CdB₂O₄ was synthesised under high-pressure/high-temperature conditions of 7.5 GPa and 1100°C. As starting reagents, CdO and B₂O₃ (Strem Chemicals, Newburyport, USA, 99+%) were ground together in the stoichiometric ratio $CdO:B_2O_3 =$ 1:1. The mixture was filled into a boron nitride crucible (Henze BNP GmbH, HeBoSint $^{\circledast}$ S10, Kempten, Germany) of an 18/11-assembly. The compound was compressed and heated by means of a multianvil assembly, based on a Walker-type module and a 1000 t press (Voggenreiter, Mainleus, Germany). Therefore, the boron nitride crucible was positioned inside the centre of an 18/11 assembly, which was compressed by eight tungsten carbide cubes (TSM-10, Ceratizit, Reutte, Austria) with truncated corners. A detailed description of the assembly can be found in refs. [56-60]. For the synthesis of CdB₂O₄, the sample was compressed within 3 h to 7.5 GPa. After reaching constant pressure, the sample was heated to 1100°C in the following 10 min (cylindrical graphite furnace). After holding this temperature for 5 min, the sample was cooled down to 650 °C in another 15 min. Afterwards, the sample was guenched to room temperature by switching off the heating, followed by decompression over a period of 9 h. The recovered pressure medium (MgO octahedron) was broken apart and the sample carefully separated from the surrounding boron nitride crucible, gaining the air- and water-resistant, colourless, crystalline compound CdB2O4. A powder diffraction pattern showed no crystalline impurities, and EDX measurements confirmed the chemical composition of CdB₂O₄.

Single crystal X-ray diffraction: Prior to single crystal measurements, the quality of selected crystals was checked under a polarizing microscope. For the data collection, a colourless fragment $(0.23 \times 0.18 \times 0.14 \text{ mm})$ was used. Intensity data were measured on a CAD4 diffractometer (Nonius) in the $\omega/2\theta$ technique, scanning the whole reciprocal sphere up to $90^{\circ}/2\theta$. A numerical absorption correction, based on an optimisation of the crystal shape, was applied using the program HABITUS.^[61] The crystal structure of CdB₂O₄ was solved by direct methods in space group *P*6₃ and refined with the SHELXTL program package.^[62,63] Additional information

of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crystdata@fiz-karlsruhe.de), on quoting the depository number CSD-419180.

Temperature programmed X-ray powder diffraction: Temperature programmed X-ray powder diffraction experiments were performed on a STOE STADI P powder diffractometer [MoK_a] radiation (λ = 71.073 pm)] with a computer controlled STOE furnace. The sample was enclosed in a silica capillary and heated from room temperature to 500 °C in 100 °C steps, and from 500 °C to 1100 °C in 50 °C steps. Afterwards, the sample was cooled down to 500 °C in 50 °C steps, and from 500 °C to room temperature in 100 °C steps. After each heating step, a diffraction pattern was recorded over the angular range 8° $\leq 2\theta \leq 16^\circ$.

Electron diffraction experiments: Electron diffraction was carried out on a FEI Titan 80–300, equipped with a field emission gun, operating at 300 kV. The sample was ground in an agate mortar and dispersed in ethyl alcohol suspension. A small amount of the suspension was subsequently dispersed on a copper grid, coated with holey carbon film. The grids were mounted on a double tilt holder with a maximum tilt angle of 30° and subsequently transferred into the microscope. The diffraction patterns were recorded on a Gatan UltraScan 1000 P CCD camera.

Acknowledgements

The authors gratefully acknowledge the continuous support of this work by Prof. Dr. W. Schnick, Department Chemie and Biochemie of the Ludwig-Maximilians-University of Munich (LMU). Special thanks go to T. Miller for the temperature-programmed in situ X-ray diffraction experiments. This work was financially supported by the Deutsche Forschungsgemeinschaft HU 966/2–3. H. H. is indebted to the Fonds der Chemischen Industrie for financial support.

- H. Huppertz, B. von der Eltz, R.-D. Hoffmann, H. Piotrowski, J. Solid State Chem. 2002, 166, 203.
- [2] H. Emme, C. Despotopoulou, H. Huppertz, Z. Anorg. Allg. Chem. 2004, 630, 1717.
- [3] H. Emme, C. Despotopoulou, H. Huppertz, Z. Anorg. Allg. Chem. 2004, 630, 2450.
- [4] G. Heymann, T. Soltner, H. Huppertz, Solid State Sci. 2006, 8, 821.
- [5] A. Haberer, G. Heymann, H. Huppertz, Z. Naturforsch. B 2007, 62, 759.
- [6] J. S. Knyrim, J. Friedrichs, S. Neumair, F. Roeßner, Y. Floredo, S. Jakob, D. Johrendt, R. Glaum, H. Huppertz, *Solid State Sci.* 2007, 10, 168.
- [7] H. Huppertz, G. Heymann, Solid State Sci. 2003, 5, 281.
- [8] H. Huppertz, Z. Naturforsch. B 2003, 58, 257.
- [9] H. Emme, M. Weil, H. Huppertz, Z. Naturforsch. B 2005, 60, 815.
- [10] J. S. Knyrim, P. Becker, D. Johrendt, H. Huppertz, Angew. Chem. 2006, 118, 8419; Angew. Chem. Int. Ed. 2006, 45, 8239.
- [11] J. S. Knyrim, F. M. Schappacher, R. Pöttgen, J. Schmedt auf der Günne, D. Johrendt, H. Huppertz, *Chem. Mater.* 2007, 19, 254.
- [12] J. S. Knyrim, H. Huppertz, J. Solid State Chem. 2007, 180, 742.
- [13] J. S. Knyrim, H. Huppertz, Z. Naturforsch. B 2008, 63, in press.
- [14] H. Huppertz, B. von der Eltz, J. Am. Chem. Soc. 2002, 124, 9376.
- [15] H. Huppertz, Z. Naturforsch. B 2003, 58, 278.
- [16] H. Huppertz, H. Emme, J. Phys. Condens. Matter 2004, 16, 1283.
- [17] H. Emme, H. Huppertz, Z. Anorg. Allg. Chem. 2002, 628, 2165.
- [18] H. Emme, H. Huppertz, Chem. Eur. J. 2003, 9, 3623.
- [19] H. Emme, H. Huppertz, Acta Crystallogr. 2005, A61, i29.
- [20] J. S. Knyrim, F. Roeßner, S. Jakob, D. Johrendt, I. Kinski, R. Glaum, H. Huppertz, *Angew. Chem.* **2007**, *119*, 9256; *Angew. Chem. Int. Ed.* **2007**, *46*, 9097.
- [21] M. Ihara, J. Krogh-Moe, Acta Crystallogr. 1966, 20, 132.
- [22] H. Bartl, W. Schuckmann, Neues Jahrb. Mineral. Monatsh. 1966, 142.

CHEMISTRY

A EUROPEAN JOURNAL

- [23] S. C. Abrahams, J. L. Bernstein, P. Gibart, R. C. Sherwood, J. Chem. Phys. 1974, 60, 1899.
- [24] J. L. C. Rowsell, N. J. Taylor, L. F. Nazar, J. Solid State Chem. 2003, 174, 189.
- [25] M. Martinez-Ripoll, S. Martinez-Carrera, S. Garcia-Blanco, Acta Crystallogr. 1971, B27, 672.
- [26] M. Weil, Acta Crystallogr. 2003, E59, i40.
- [27] Y. Laureiro, M. L. Veiga, M. L. Lopez, S. Garcia-Martin, A. Jerez, C. Pico, *Powder Diffr.* 1991, 6, 28.
- [28] Y.-H. Zhao, X.-A. Chen, X.-A. Chang, J.-L. Zuo, M. Li, Acta Crystallogr. 2007, E63, i50.
- [29] S. V. Berger, Acta Chem. Scand. 1949, 3, 660.
- [30] M. Weil, Acta Crystallogr. 2003, E59, i95.
- [31] G. C. Guo, W. D. Cheng, J. T. Chen, J. S. Huang, Q. E. Zhang Acta Crystallogr. 1995, C51, 351.
- [32] V. Kahlenberg, R. X. Fischer, J. B. Parise, J. Solid State Chem. 2000, 154, 612.
- [33] A. P. Khomyakov, G. N. Nechelyustov, E. Sokolova, E. Bonaccorsi, S. Merlino, M. Pasero, *Can. Mineral.* 2002, 40, 961.
- [34] P. A. Sandomirskii, S. S. Meshalkin, I. V. Rozhdestvenskaya, L. N. Dem'yanets, T. G. Uvarova, *Sov. Phys. Crystallogr.* 1986, *31*, 522.
- [35] G. Lampert, R. Boehme, Z. Kristallogr. 1986, 176, 29.
- [36] M. Lujan, F. Kubel, H. Schmid, Z. Naturforsch. B 1994, 49,1256.
- [37] F. W. Karau, *PhD. thesis*, Ludwig-Maximilians-Universität München, **2007**.
- [38] F. W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, *Chem. Eur. J.* 2007, 13, 6841.
- [39] F. Liebau, Structural Chemistry of Silicates, Springer, Berlin, 1985.
- [40] The expression "sechser" ring was contrived by Liebau^[39] and refers to the German word sechs, which means six. A "sechser" ring is not a six-membered ring, but a ring built up from six tetrahedral centres (B) and six bridging atoms (O), thus consisting of 12 atoms. Similar terms exist for rings built up from three, four and five tetrahedral centres (and the corresponding number of bridging atoms), namely "dreier", "vierer" and "fünfer" rings.
- [41] E. Zobetz, Z. Kristallogr. 1990, 191, 45.

- [42] F. C. Hawthorne, P. C. Burns, J. D. Grice, in: Boron: Mineralogy,
- Petrology and Geochemistry, 2 ed.; E. S. Grew; L. M. Anovitz, (Eds.) Mineralogical Society of America: Washington, 1996, 33, 41.
 [43] I. D. Brown, D. Altermatt, *Acta Crystallogr.* 1985, *B41*, 244.
- [44] N.E. Drown, D. Mitermatt, *Field Crystallog*, **1965**, *B*+1, 244
- [44] N. E. Brese, M. O'Keeffe, *Acta Crystallogr.* 1991, *B47*, 192.
 [45] R. Hoppe, S. Voigt, H. Glaum, J. Kissel, H. P. Müller, K. Bernet, J.
- [45] K. Hoppe, S. Vogt, H. Glaun, J. Kissel, H. F. Muller, K. Bernet, J. Less-Common Met. 1989, 156, 105.
- [46] J. D. Odom, A. J. Zozulin, S. A. Johnston, J. R. Durig, J. Organomet. Chem. 1980, 201, 351.
- [47] K. L. Geisinger, G. V. Gibbs, A. Navrotsky, Phys. Chem. Miner. 1985, 11, 266.
- [48] W. H. Baur, T. Ohta, Acta Crystallogr. 1982, B38, 390.
- [49] Y. I. Smolin, Y. F. Shepelev, A. P. Titov, Sov. Phys. Crystallogr., 1973, 17, 749.
- [50] K. Heidebrecht, M. Jansen, Z. Anorg. Allg. Chem. 1982, 597, 79.
- [51] H. Huppertz, W. Schnick, Angew. Chem. 1997, 109, 2765; Angew. Chem. Int. Ed. 1997, 36, 2651.
- [52] F. Liebau, Acta Crystallogr. 1984, A40 Supplement, C254.
- [53] A. K. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- [54] J. W. Visser, J. Appl. Crystallogr. 1969, 2, 89.
- [55] STOE & CIE GmbH, WinX^{POW} Software, Darmstadt, Germany, 1998.
- [56] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral. 1990, 75, 1020.
- [57] D. Walker, Am. Mineral. 1991, 76, 1092.
- [58] H. Huppertz, Z. Kristallogr. 2004, 219, 330.
- [59] D. C. Rubie, Phase Transitions 1999, 68, 431.
- [60] N. Kawai, S. Endo, Rev. Sci. Instrum. 1970, 8, 1178.
- [61] W. Herrendorf, HABITUS. Program for optimisation of the crystal shape for the numerical absorption correction. Universities of Karlsruhe and Gießen, Germany, 1997.
- [62] Bruker-AXS. SHELXTL. Version 5.1. Bruker AXS Inc. Madison, Wisconsin, USA. 1997.
- [63] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.

Received: March 18, 2008 Published online: June 3, 2008

6154 -

Chem. Eur. J. 2008, 14, 6149-6154